Heterogeneous Multiscale Finite Element Method with Novel Numerical Integration Schemes

ثبت نشده
چکیده

In this paper we introduce two novel numerical integration schemes, within the framework of the heterogeneous multiscale method (HMM) when finite element method is used as the macroscopic solver, to resolve the elliptic problem with multiscale coefficient. For non-self-adjoint elliptic problems, optimal convergence rate is proved for the proposed methods, which naturally yields a new strategy for refining the macro-micro meshes and a criterion for determining the size of the microcell. Numerical results following this strategy show that the new methods significantly reduce the computational cost without loss of accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Multiscale Finite Element Method with Novel Numerical Integration Schemes

In this paper we introduce two novel numerical integration schemes, within the framework of the heterogeneous multiscale method (HMM) when finite element method is used as the macroscopic solver, to resolve the elliptic problem with multiscale coefficient. For non-self-adjoint elliptic problems, optimal convergence rate is proved for the proposed methods, which naturally yields a new strategy f...

متن کامل

A novel modification of decouple scaled boundary finite element method in fracture mechanics problems

In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...

متن کامل

Comparison of two integration schemes for a micropolar plasticity model

Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...

متن کامل

A Finite Element Heterogeneous Multiscale Method with Improved Control over the Modeling Error

Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typ...

متن کامل

Fully discrete analysis of the heterogeneous multiscale method for elliptic problems with multiple scales

A fully discrete analysis of the finite element heterogeneous multiscale method (FEHMM) for elliptic problems with N + 1 well separated scales is discussed. The FEHMM is a numerical homogenization method that relies on macroscopic scheme (macro FEM) for the approximation of the effective solution corresponding to the multiscale problem. The effective data are recovered from micro scale computat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009